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1 Summary of Empirical Design

Several forecasting strategy questions naturally arise in implementing a real-time volatility fore-

casting exercise. These questions are the thesis of this article, and may be stated as follows: When

constructing volatility forecasts for a range of assets over multiple horizons, what are the best choices

for i) volatility model, ii) estimation window length, iii) frequency of parameter re-estimation and

iv) innovation distribution? In addition, we ask if our conclusions regarding forecasting models or

estimation strategies break down during periods of turmoil such as the volatility surge of late 2008.

The set of volatility models considered GARCH, TARCH, EGARCH, NGARCH and APARCH.

Estimation window lengths range from the full post-1990 sample to windows as small as four years.

If parameters are unstable, it may be practical to re-estimate using a shorter, rolling window. We

also consider whether daily re-estimation improves over weekly re-estimation, and similarly whether

there is any significant loss to re-estimating only monthly. This question trades off computing cost

against forecast accuracy, and is relevant when the collection of assets and models becomes large.

To address the prevalence of fat-tailed returns, we consider taking non-Gaussian aspects of the data

into account by using a Student t likelihood, which can potentially improve efficiency by correcting
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the specification, thus improving forecasting performance. Using a heavy-tailed likelihood, how-

ever, introduces a new parameter. Considering both Gaussian and Student t innovations allows us

to assess the role played by heavy tailed innovations in the forecast optimization effort. Our test

assets are eighteen domestic and international equity indices, nine sectoral equity indices, and ten

exchange rates. We forecast from one day to one month ahead. Our data begins in 1990 and we use

an out-of-sample interval spanning 2001 to 2008. This period contains both high volatility episodes

(corresponding roughly to the NBER recessions of March 2001 to November 2001 and December

2007 through the present), as well as the protracted interval of low volatility from approximately

2003 until 2007. We devote special attention to the period of financial crisis from September 2008

to December 2008 and characterize the extremity of the crisis compared to historical standards.

Our overall assessment proceeds in two stages. We first perform exhaustive comparisons of

models and estimation strategies using the S&P 500 index as the test asset. This provides the

skeleton for our evaluation procedure that is then applied to all other assets. Due to the sheer

volume of output, we report condensed results for the full set of test assets and more detailed

results for the S&P 500. To evaluate volatility forecast accuracy we rely on ex post proxies for

the true, latent volatility process. The two standard proxies are squared returns and the more

precisely estimated realized variance, calculated from ultra high frequency data. Our forecast

accuracy comparisons are based on squared returns for our full set of test assets. For the S&P 500

index we also use realized volatility to make our assessments - this allows us to evaluate if and how

conclusions from our experiments might change when different proxies are used. Forecast accuracy

is measured with robust forecast loss functions advocated by Patton (2009).
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2 Related Literature

The literature on volatility forecasting and forecast evaluation is surveyed in Poon & Granger

(2003), Poon & Granger (2005), Patton & Sheppard (2009). Volatility forecasting assessments are

commonly structured to hold the test asset and estimation strategy fixed, focusing on model choice.

We take a more pragmatic approach and consider how much data should be used for estimation,

how frequently a model should be re-estimated, and what innovation distributions should be used.

This is done for each model we consider. Furthermore, we do not rely on a single asset or asset

class to draw our conclusions. We look beyond volatility forecasting meta-studies, in particular

the Poon and Granger papers, which focus almost exclusively on one day ahead forecasts. Our

work draws attention to the relevance of multi-step ahead forecast performance for model eval-

uation, especially in crisis periods when volatility levels can escalate dramatically in a matter of

days. The issues of multiple step ahead forecasting has also been addressed by Christoffersen &

Diebold (2000) and Ghysels, Rubia & Valkanov (2009). The forecast evaluation methodology em-

ployed builds upon the recent contributions on robust forecasting assessment developed in Hansen

& Lunde (2005) and Patton (2009), which consistently rank volatility forecasts despite the fact

volatility is not observable. An important implication of these results is that the conflicting evi-

dence reported by some previously published empirical studies on volatility forecasting is due to

the use of non robust losses, and this calls for a reassessment of previous findings in this field.

The improvements in consistent volatility forecast ranking also hinge on the recent availability of

high frequency based volatility measures (inter alia Andersen, Bollerslev, Diebold & Labys (2003),

Bandi & Russel (2006), Aı̈t-Sahalia, Mykland & Zhang (2005), Barndorff-Nielsen, Hansen, Lunde

& Shephard (2009)) which provide efficient ex-post estimators of daily volatility. Other approaches

to volatility forecast evaluation are based on assessing the value of predictions from economic or risk
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management perspectives (Fleming, Kirby & Ostdiek (2003), Kuester, Mittnik & Paolella (2006),

Brownlees & Gallo (2009)). Recent developments in volatility forecasting also include a number of

models based on high frequency based volatility measures. The contributions in this area include

among others Andersen et al. (2003), Deo, Hurvich & Lu (2006), Engle & Gallo (2006), Ait-Sähalia

& Mancini (2008), Hansen, Huang & Shek (2010), Corsi (2010), and Shephard & Sheppard (2010).

While promising in terms of improved forecast accuracy, our study omits these approaches as well

as approaches based on stochastic volatility models (cf. Ghysels, Harvey & Renault (1995)). ARCH

models require daily frequency data which are typically easier to obtain than intra-daily data and

ARCH estimation software is typical widely available and easier to implement. Moreover, using a

set of models which differs in the choice of the dependent variable and the conditioning information

sets makes the results of a forecasting comparison harder to interpret.

3 Additional Discussion of Results

3.1 S&P 500 Volatility

Adoption of a Student t likelihood does not significantly improve performance at short horizons,

although at longer horizons significantly positive improvements are possible. The Student t down-

weights extremes with respect to the Gaussian, thus it can provide a more robust estimate of

the long run variance. As we see in these tables and discuss in more detail later, short horizon

volatility and return realizations do not appear to violate a Gaussian assumption, though at longer

horizons we see substantially more tail events than a normal curve would predict. The possibility

that a Student t provides a better description of volatility at long horizons is consistent with these

observations.
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Using a shorter, rolling estimation window tends to weaken forecasting accuracy. In some cases,

the performance decreases by as much as 20%. The window length results are non-monotonic.

While the full sample dominates, we often see that the medium estimation window does worse than

the short window. To understand how this may arise, Figure 1 displays the time series plot of

parameter estimates for one of our models (TARCH) and the implied persistence (α + γ/2 + β)

using the base procedure. Estimates are expressed as absolute differences with respect to the

estimates obtained at the beginning of the out-of-sample period. While there is no clear evidence

of breaks in the parameters, the series do exhibit a slow drift: α systematically declines during

this period, ending up insignificantly different from zero by the end of 2008. Movements in β and

γ appear quite large and negatively correlated, transferring weight in the evolution equation away

from past conditional variance toward past squared negative returns. The graph also suggests that

periods of more severe financial distress are associated with higher weight on past squared negative

returns. This suggests that the short window has some ability to capture variation in parameters,

though at the cost of less precise estimates. Ultimately, the noisiness overwhelms the gains from

parameter variation, and the net effect is slightly worse performance by the short window. The

medium window, on the other hand, uses a long enough history to miss much of the time variation

in parameters and at the same time loses accuracy compared to the full sample window, resulting

in the worst forecasting performance of the three windows. We also see more deterioration in short

and medium window performance at longer forecast horizons. Lastly, the update frequency results

show that more frequent updating tends to modestly improve performance, but the difference is

insignificant in many cases.

Table 6 shows losses for each GARCH model over the full out-of-sample period 2001 to 2008.

We report results for both QL and MSE loss functions with r2 and rv proxies. To compare accuracy
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across models, we use the Diebold-Mariano test to detect if a given model provides significantly

lower average losses compared to the GARCH model. For comparison purposes the table also

includes the näıve 60 days historical variance forecast. Significant outperformance at the 10%, 5%

and 1% significance level are denoted by (∗), (∗∗), and (∗∗∗), respectively.

Asymmetric specifications provide lower out-of-sample losses, especially over one day and one

week. At longer horizons, recent negative returns are less useful for predicting future volatility.

At the one month horizon, the mean reversion effect begins to dominate as the difference between

asymmetric and symmetric GARCH becomes insignificant, and historical variance becomes com-

petitive.

The choice of loss function does not change rankings, but MSE loss seems to provide more mixed

evidence than QL. There is some discrepancy in the rankings however when using different proxies.

Squared returns favor TARCH while realized volatility selects EGARCH. The discrepancy should

not be overstated, however, as the methods do not significantly outperform each other. Results do

suggest model rankings are stable over various forecasting horizons.

Table 7 repeats the direct GARCH comparison from Table 6, but focuses on the extreme

volatility interval from September 2008 through December 2008. During this time, forecasting losses

at all horizons are systematically larger than in the overall sample. Recall that QL is unaffected by

changes in the level of volatility, so that changes in average losses purely represent differences in

forecasting accuracy. We find that one step ahead losses during fall 2008 are only modestly higher

than those registered in the full sample. At one month, however, QL losses are twice as big as

the full sample using squared returns and four times as big using realized volatility. An important

feature of this table is that our conclusions about model ranking remain largely unchanged during

the crisis. TARCH tends to be most accurate, though differences with symmetric GARCH and
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historical variance start to lose significance at long horizons. MSE gives a much more confused

picture of volatility in Fall 2008. Most noticeably, the MSE level during the crisis is an order

of magnitude higher than the in full sample. GARCH specifications systematically outperform

historical variance only at very short horizons, though at such horizons we again find that the

asymmetric versions are superior.

Tables 8 and 9 contain the summary forecasting results for a broader collection of assets (see

Table 1 in main article). Volatility forecast losses for exchange rates, US equity sector indices and

international equity indices from each model averaged not only across time, but also averaged over

all assets in the same class. Asterisks denote that a model significantly outperformed GARCH

based on the Diebold-Mariano test. We also report the relative winning frequency for each model,

defined as the number of assets in a class for which a given model provided the best out-of-sample

forecasts.

Of all asset classes, exchange rates appear to be most forecastable as they give the smallest

losses according to QL. For several cases, the average loss point estimate is lower for asymmetric

models, despite the fact that leverage effects for exchange rates are not well defined. While we find

that no specification obtains significantly lower average losses than GARCH according to the QL

loss, though there is some significant evidence in favor of asymmetric models based on MSE. Also,

asymmetric models demonstrate success in terms of winning frequency.

Tables 8 and 9 are strong evidence in favor of using asymmetric models for sectoral equity

indices. TARCH emerges as the best performer, closely followed by APARCH. This is clearest from

the QL results, which show that all asymmetric specifications (other than EGARCH) outperform

GARCH over all horizons. MSE results are similar, but less statistically significant.

International equities deliver similar results. Asymmetric specifications perform better than
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GARCH, with TARCH the most frequent top model according to both QL and MSE losses. Most

evidence of outperformance, however, is limited to shorter horizons - at long horizons the winning

frequency becomes more uniform across models.

Table 10 and 11 report average losses during the fall 2008 crisis. Results confirm our findings in

the S&P500 case. One-day ahead losses are virtually unchanged from those during the full sample,

while one month losses are magnified by a factor of about two. TARCH appears to be the best

performer at all horizons for all asset classes, although the margin appears to remain small for

exchange rates.
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Loss σ̂2 Est. Strategy Horizon

1 d 1 w 2 w 3 w 1 m

QLL r2 base 1.460 1.481 1.520 1.574 1.645

Student t news -0.16 -0.10 0.08 0.41 0.83
∗

medium window -0.71 -1.05 -2.12 -3.07 -4.41

long window -0.71 -1.06 -1.63 -2.28 -3.12

monthly update -0.02 -0.04 -0.02 -0.03 0.02

daily update 0.01 0.01 0.04
∗

0.01 0.02

QLL rv base 0.273 0.310 0.343 0.373 0.414

Student t news -3.22 -1.96 -0.99 -0.37 0.41

medium window 0.97 -2.36 -5.30 -7.23 -9.70

long window -8.95 -12.55 -16.06 -18.58 -20.85

monthly update -0.05 -0.02 -0.07 -0.05 -0.01

daily update 0.11 0.03 0.02 0.01 0.03

MSE r2 base 27.533 30.050 31.980 33.828 36.347

Student t news -0.28 -0.20 -0.14 -0.26 -0.93

medium window 0.18 0.81
∗

-0.08 -0.05 0.28

long window 0.37 0.66 0.044 -0.23 -0.35

monthly update -0.10 -0.09 -0.01 -0.08 -0.20

daily update -0.04 0.09 0.22 0.08 -0.02

MSE rv base 4.357 4.998 5.984 6.901 7.950

Student t news -3.71 -4.25 -5.06 -6.33 -9.35

medium window -0.34 -0.39 -0.67 -0.01 1.85

long window -4.93 -6.19 -6.87 -7.07 -6.19

monthly update 1.04
∗∗

1.36 1.22 0.97 0.45

daily update 0.16 0.10 0.23 -0.08 -0.12

Table 1: GARCH Estimation Strategy Assessment. For each loss function and volatility proxy, the table reports

the out-of-sample losses at multiple horizons of the Vlab estimation strategy and the percentage gains derived by

modifying the estimation strategy with (i) Student t innovations, (ii) medium estimation window, (iii) long estimation

window, (iv) monthly estimation update and (v) daily estimation update. Asterisks beneath the percentage gains

denote the significance of a Diebold-Mariano test under the null of equal or inferior predictive ability with respect to

the baseline Vlab strategy (level of statistical significance denoted by *=10%, **=5%, ***=1%).
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Loss σ̂2 Est. Strategy Horizon

1 d 1 w 2 w 3 w 1 m

QLL r2 base 1.415 1.442 1.478 1.547 1.624

Student t news 0.01 0.02 0.30
∗

0.59
∗

1.21
∗∗

medium window -0.86 -1.07 -1.79 -3.06 -4.49

long window -1.06 -1.46 -2.06 -2.65 -3.35

monthly update 0.01 -0.01 -0.01 -0.01 0.03

daily update -0.01 -0.01 0.02 0.01 0.01

QLL rv base 0.243 0.289 0.328 0.368 0.415

Student t news -2.84 -2.20 -1.45 -0.913 -0.16

medium window 5.80
∗∗∗

2.79
∗

1.03 -1.052 -3.74

long window -10.58 -13.65 -16.33 -18.13 -19.64

monthly update -0.12 -0.06 -0.08 -0.05 -0.03

daily update 0.05
∗∗∗

0.01 0.01 -0.010 0.02

MSE r2 base 25.583 28.874 31.151 33.197 36.043

Student t news 0.31 0.57 0.37 0.07 -0.80

medium window 0.16 -0.60 -1.41 -1.07 -0.17

long window 0.31 0.05 -0.22 -0.34 -0.59

monthly update -0.03 -0.02 -0.03 -0.06 -0.07

daily update -0.05 0.05 0.14 0.05 -0.02

MSE rv base 3.647 4.550 5.687 6.474 7.312

Student t news -10.2 -10.50 -11.38 -12.78 -15.209

medium window 5.84 4.05 4.32
∗

5.87
∗

8.92
∗

long window -2.71 -4.49 -4.69 -4.85 -4.84

monthly update 0.70
∗∗

0.66 0.16 0.18 0.03

daily update -0.18 0.75 -0.11 -0.21 -0.13

Table 2: TGARCH Estimation Strategy Assessment. For each loss function and volatility proxy, the table reports

the out-of-sample losses at multiple horizons of the Vlab estimation strategy and the percentage gains derived by

modifying the estimation strategy with (i) Student t innovations, (ii) medium estimation window, (iii) long estimation

window, (iv) monthly estimation update and (v) daily estimation update. Asterisks beneath the percentage gains

denote the significance of a Diebold-Mariano test under the null of equal or inferior predictive ability with respect to

the baseline Vlab strategy (level of statistical significance denoted by *=10%, **=5%, ***=1%).
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Loss σ̂2 Est. Strategy Horizon

1 d 1 w 2 w 3 w 1 m

QLL r2 base 1.420 1.458 1.505 1.592 1.684

Student t news -0.87 0.30 1.45
∗

2.73
∗∗

4.23
∗∗

medium window -2.31 -3.76 -5.14 -7.64 -10.31

long window -1.29 -1.75 -1.93 -2.53 -2.88

monthly update -0.22 -0.05 0.02 -0.01 -0.06

daily update -0.17 0.07 0.14 0.22 0.22

QLL rv base 0.234 0.282 0.320 0.365 0.413

Student t news -26.74 -15.22 -8.31 -3.50 1.10

medium window -1.66 -3.47 -6.69 -10.18 -14.93

long window -12.98 -12.45 -12.90 -13.57 -13.89

monthly update 0.50 0.68
∗∗∗

0.56
∗∗

0.42
∗

0.25

daily update -4.75 -2.76 -2.13 -1.52 -1.11

MSE r2 base 26.746 31.328 33.984 35.912 37.828

Student t news 3.36
∗

5.63
∗∗

5.17
∗∗

4.79
∗∗

3.65
∗

medium window 2.471
∗

-2.31 -3.70 -3.825 -3.224

long window 1.284
∗

-0.31 -0.28 -0.26 -0.18

monthly update -0.34 -0.23 -0.14 -0.14 -0.10

daily update 0.10 0.30
∗∗

0.02 0.18
∗∗

0.13
∗∗

MSE rv base 2.653 3.859 4.758 5.428 6.085

Student t news -37.92 -14.12 -4.37 -0.81 1.01

medium window 13.62
∗∗

-2.19 -6.73 -8.27 -7.59

long window 2.17
∗∗

-3.27 -2.30 -2.17 -1.68

monthly update 0.51 0.36 0.19 0.03 -0.08

daily update -0.53 -0.1 4 0.13 0.02 0.12

Table 3: EGARCH Estimation Strategy Assessment. For each loss function and volatility proxy, the table reports

the out-of-sample losses at multiple horizons of the Vlab estimation strategy and the percentage gains derived by

modifying the estimation strategy with (i) Student t innovations, (ii) medium estimation window, (iii) long estimation

window, (iv) monthly estimation update and (v) daily estimation update. Asterisks beneath the percentage gains

denote the significance of a Diebold-Mariano test under the null of equal or inferior predictive ability with respect to

the baseline Vlab strategy (level of statistical significance denoted by *=10%, **=5%, ***=1%).
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Loss σ̂2 Est. Strategy Horizon

1 d 1 w 2 w 3 w 1 m

QLL r2 base 1.417 1.446 1.485 1.557 1.633

Student t news 0.04 0.12 0.49
∗∗

0.67
∗∗

1.06
∗∗

medium window -1.07 -0.76 -1.23 -2.25 -3.65

long window -1.14 -1.61 -2.24 -3.00 -3.84

monthly update -0.03 -0.05 -0.06 -0.07 -0.06

daily update 0.06 0.02 0.07 0.04 0.04

QLL rv base 0.249 0.299 0.340 0.385 0.435

Student t news -2.96 -0.73 1.27
∗∗

2.59
∗∗

4.03
∗∗∗

medium window 7.49
∗∗∗

5.87
∗∗

5.83
∗∗

4.81
∗∗

2.98

long window -7.69 -9.56 -11.09 -12.66 -14.08

monthly update -0.22 -0.17 -0.30 -0.27 -0.27

daily update 0.24 0.07
∗∗

0.07
∗

0.09 0.11

MSE rv base 25.678 29.421 32.098 33.949 36.408

Student t news 0.63 1.02
∗

0.91 0.60 -0.08

medium window 0.75 1.09 0.69 0.50 0.36

long window 0.27 -0.01 -0.54 -0.50 -0.64

monthly update -0.15 -0.08 -0.11 -0.18 -0.21

daily update 0.01 0.18 0.35 0.15 0.02

MSE rv base 3.384 4.614 5.543 6.234 6.868

Student t news -14.62 -10.38 -9.21 -8.72 -8.86

medium window 0.05 4.12 2.42 2.64 4.19

long window -3.32 -3.62 -4.81 -5.37 -5.15

monthly update 1.00
∗∗

0.83
∗

0.46 0.24 -0.32

daily update 0.08 0.286 0.36 0.10 0.08

Table 4: APARCH Estimation Strategy Assessment. For each loss function and volatility proxy, the table reports

the out-of-sample losses at multiple horizons of the Vlab estimation strategy and the percentage gains derived by

modifying the estimation strategy with (i) Student t innovations, (ii) medium estimation window, (iii) long estimation

window, (iv) monthly estimation update and (v) daily estimation update. Asterisks beneath the percentage gains

denote the significance of a Diebold-Mariano test under the null of equal or inferior predictive ability with respect to

the baseline Vlab strategy (level of statistical significance denoted by *=10%, **=5%, ***=1%).
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Loss σ̂2 Est. Strategy Horizon

1 d 1 w 2 w 3 w 1 m

QLL r2 base 1.422 1.459 1.498 1.574 1.659

Student t news -0.02 0.06 0.39
∗∗

0.71
∗∗

1.27
∗∗

medium window -0.80 -1.21 -1.99 -3.26 -4.65

long window -0.97 -1.98 -2.72 -3.44 -4.07

monthly update -0.00 -0.02 -0.03 -0.04 -0.02

daily update 0.02 0.01 0.04
∗

0.02 0.02

QLL rv base 0.244 0.296 0.337 0.380 0.432

Student t news -2.19 -1.48 -0.73 -0.18 0.54

medium window 3.30 0.015 -2.28 -4.02 -6.37

long window -12.93 -16.54 -19.14 -20.35 -20.82

monthly update -0.10 -0.064 -0.138 -0.139 -0.140

daily update 0.132
∗∗

0.02 0.036
∗

0.034 0.068

MSE r2 base 27.060 30.027 32.054 33.948 36.171

Student t news 0.26 0.58 0.66 0.60 0.25

medium window 0.28 -0.47 -1.27 -1.37 -0.88

long window 0.40
∗∗

-0.25 -0.53 -0.66 -0.64

monthly update -0.06 -0.08 -0.06 -0.16 -0.15

daily update -0.00 0.08 0.15 0.08 0.03

MSE rv base 3.667 4.337 5.146 5.856 6.525

Student t news -5.42 -5.32 -5.58 -6.05 -7.09

medium window 7.56
∗∗

5.42
∗∗

5.04
∗∗

5.05 6.23

long window 2.04
∗∗

-0.29 -0.68 -0.93 -0.89

monthly update 0.66
∗∗

0.75
∗∗

0.49 0.25 -0.080

daily update 0.09 0.05 0.14 -0.08 0.016

Table 5: NGARCH Estimation Strategy Assessment. For each loss function and volatility proxy, the table reports

the out-of-sample losses at multiple horizons of the Vlab estimation strategy and the percentage gains derived by

modifying the estimation strategy with (i) Student t innovations, (ii) medium estimation window, (iii) long estimation

window, (iv) monthly estimation update and (v) daily estimation update. Asterisks beneath the percentage gains

denote the significance of a Diebold-Mariano test under the null of equal or inferior predictive ability with respect to

the baseline Vlab strategy (level of statistical significance denoted by *=10%, **=5%, ***=1%).
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Loss σ̂2 Model Horizon

1 d 1 w 2 w 3 w 1 m

QLL r2 GARCH 1.462 1.481 1.520 1.574 1.645

TGARCH 1.415
∗∗∗

1.442
∗∗∗

1.478
∗∗∗

1.547
∗∗∗

1.624

EGARCH 1.420
∗∗∗

1.458
∗∗∗

1.505 1.592 1.684

APARCH 1.417
∗∗∗

1.446
∗∗∗

1.485
∗∗∗

1.557
∗

1.633

NGARCH 1.422
∗∗∗

1.459
∗∗∗

1.498
∗

1.574
∗∗∗

1.659

HIS 1.518 1.541 1.577 1.626 1.692

QLL rv GARCH 0.273 0.310 0.343 0.373 0.414

TGARCH 0.243
∗∗∗

0.289
∗∗∗

0.328 0.368 0.415

EGARCH 0.234
∗∗∗

0.282
∗∗∗

0.320 0.365 0.413

APARCH 0.249
∗∗∗

0.299
∗

0.340 0.385 0.435

NGARCH 0.244
∗∗∗

0.296
∗∗

0.337 0.380 0.432

HIS 0.314 0.337 0.360 0.385 0.420

MSE r2 GARCH 27.533 30.050 31.980 33.828 36.347

TGARCH 25.583
∗∗

28.874
∗

31.151 33.197 36.043
∗

EGARCH 26.746 31.328 33.984 35.912 37.828

AGARCH 25.678
∗∗

29.421
∗∗

32.098 33.949 36.408

NGARCH 27.060
∗∗∗

30.027 32.054 33.948 36.171

HIS 29.862 32.817 34.189 35.646 37.649

MSE rv GARCH 4.357 4.998 5.984 6.901 7.950

TGARCH 3.647
∗∗

4.550 5.687 6.474
∗∗

7.312
∗

EGARCH 2.653
∗∗∗

3.859
∗

4.758
∗

5.428
∗

6.085

AGARCH 3.384
∗∗∗

4.614 5.543
∗∗

6.234
∗

6.868

NGARCH 3.667
∗∗∗

4.337
∗∗

5.146
∗∗

5.856
∗

6.525
∗

HIS 4.632 5.002 5.687 6.390 7.415

Table 6: S&P 500 volatility prediction comparison of GARCH models from 2001 to 2008. For each loss and volatility

proxy the table reports the out-of-sample loss at multiple horizons of the GARCH models as well as 60 days Historical

Variance (HIS). Asterisks beneath GARCH models losses denote the significance of a Diebold-Mariano test under the

null of equal or inferior predictive ability with respect to the GARCH model (level of statistical significance denoted

by *=10%, **=5%, ***=1%). The best forecasting performance for each loss and proxy pair is highlighted in bold.
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Loss σ̂2 Model Horizon

1 d 1 w 2 w 3 w 1 m

QLL r2 GARCH 1.664 1.788 2.304 2.593 3.324

TGARCH 1.461 1.560 1.985 2.311 2.875

EGARCH 1.701 1.992 2.809 3.453 4.386

APARCH 1.565 1.695 2.233 2.631 3.306

NGARCH 1.653 1.815 2.376 2.781 3.561

HIS 2.267 2.522 3.091 3.426 4.001

QLL rv GARCH 0.344 0.417 0.676 0.798 1.630

TGARCH 0.304 0.353 0.590 0.672 1.380

EGARCH 0.255 0.405 0.798 1.058 1.954

APARCH 0.293 0.381 0.652 0.810 1.552

NGARCH 0.314 0.398 0.682 0.832 1.697

HIS 0.485 0.624 0.946 1.170 1.877

MSE r2 GARCH 704.130 786.109 839.163 869.790 823.869

TGARCH 653.564 758.170 821.906 856.299 816.990

EGARCH 692.028 836.393 911.788 942.909 874.657

AGARCH 658.838 776.873 852.660 880.727 830.446

NGARCH 696.678 792.012 848.020 878.589 821.554

HIS 771.160 869.098 907.807 928.700 867.009

MSE rv GARCH 102.628 116.548 144.042 166.307 193.307

TGARCH 88.820 108.576 140.737 158.336 178.265

EGARCH 60.960 91.652 118.044 133.112 147.591

AGARCH 79.553 109.399 135.607 150.671 164.647

NGARCH 88.126 102.324 124.960 140.879 156.213

HIS 103.100 114.192 133.902 150.646 176.237

Table 7: S&P 500 volatility prediction comparison of GARCH models in Fall 2008. For each loss and volatility

proxy the table reports the out-of-sample loss at multiple horizons of the GARCH models as well as 60 days Historical

Variance (HIS). The best forecasting performance for each loss and proxy pair is highlighted in bold.
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QL Loss

Model Average Loss Winning Frequency

1 d 1 w 2 w 3 w 1 m 1 d 1 w 2 w 3 w 1 m

Exchange Rates

GARCH 1.970 2.038 2.096 2.120 2.139 37 25 13 25 25

TGARCH 1.976 2.038 2.093 2.118 2.138 38 50 37 13 25

EGARCH 1.991 2.073 2.133 2.171 2.226 0 0 0 0 0

APARCH 1.987 2.050 2.099 2.117 2.130 25 25 25 37 50

NGARCH 1.971 2.046 2.097 2.120 2.140 0 0 25 25 0

Equity Sectors

GARCH 2.259 2.290 2.340 2.380 2.434 0 0 0 0 0

TGARCH 2.236
∗∗∗

2.266
∗∗∗

2.313
∗∗∗

2.356
∗∗∗

2.412
∗∗∗

44 56 67 78 56

EGARCH 2.270 2.303 2.349 2.392 2.447 0 0 0 0 11

APARCH 2.235
∗∗∗

2.268
∗∗∗

2.314
∗∗∗

2.359
∗∗∗

2.414
∗∗∗

56 44 33 22 33

NGARCH 2.238
∗∗∗

2.277
∗∗∗

2.323
∗∗∗

2.369
∗∗∗

2.426
∗

0 0 0 0 0

International Equities

GARCH 2.272 2.303 2.351 2.400 2.478 6 6 6 12 6

TGARCH 2.253
∗∗∗

2.289
∗∗∗

2.337
∗∗∗

2.389
∗∗

2.464
∗∗

59 82 65 53 24

EGARCH 2.262 2.300 2.352 2.406 2.475 6 0 0 0 24

APARCH 2.259
∗∗∗

2.295
∗

2.344 2.396 2.467 6 6 18 24 29

NGARCH 2.255
∗∗∗

2.293
∗∗

2.342
∗

2.394 2.469 23 6 12 12 18

Table 8: QL loss volatility prediction comparison of GARCH models from 2001 to 2008 across asset classes. For each

asset class the table reports the out-of-sample average QL loss at multiple horizons as well as the relative frequency

of cases in which a model achieved the best performance in a given asset class. Asterisks beneath losses denote

the significance of a Diebold-Mariano test under the null of equal or inferior predictive ability with respect to the

GARCH model (level of statistical significance denoted by *=10%, **=5%, ***=1%). The best average forecasting

performance for each loss and proxy pair is highlighted in bold.
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MSE Loss

Model Average Loss Winning Frequency

1 d 1 w 2 w 3 w 1 m 1 d 1 w 2 w 3 w 1 m

Exchange Rates

GARCH 4.018 4.193 4.282 4.655 4.870 13 25 38 38 37

TGARCH 3.964
∗∗∗

4.146
∗∗

4.233
∗∗

4.583
∗

4.789 25 25 13 25 25

EGARCH 4.056 4.165 4.317 4.536 4.656 0 0 12 0 12

APARCH 3.925 4.087
∗

4.172 4.469
∗

4.641 50 50 37 37 25

NGARCH 4.010 4.188 4.273 4.640 4.848 12 0 0 0 0

Equity Sectors

GARCH 63.926 62.231 66.511 69.412 73.035 0 0 0 11 11

TGARCH 61.779
∗∗∗

61.236
∗

65.697 68.592
∗∗

72.707 33 78 67 44 33

EGARCH 63.462 61.880 66.226 68.903 72.550 11 11 11 11 11

APARCH 61.991
∗∗

61.522 66.067 69.032 73.040 56 11 11 22 0

NGARCH 63.385
∗

62.078 66.223 69.141 72.456 0 0 11 11 44

International Equities

GARCH 75.983 77.004 82.756 88.570 95.092 0 0 6 12 6

TGARCH 73.565
∗∗

75.907 81.941 87.358
∗∗

93.789 65 88 59 53 12

EGARCH 75.406 79.831 85.803 90.045 94.266 0 0 0 6 18

APARCH 73.790
∗

76.827 82.900 87.903 93.665 24 6 6 0 12

NGARCH 75.119
∗∗∗

76.793 82.469 87.866 93.467 12 6 29 29 53

Table 9: MSE loss volatility prediction comparison of GARCH models from 2001 to 2008 across asset classes. For

each asset class the table reports the out-of-sample average MSE loss at multiple horizons as the relative frequency

of cases in which a model achieved the best performance in a given asset class. Asterisks beneath losses denote

the significance of a Diebold-Mariano test under the null of equal or inferior predictive ability with respect to the

GARCH model (level of statistical significance denoted by *=10%, **=5%, ***=1%). The best average forecasting

performance for each loss and proxy pair is highlighted in bold.
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Model Horizon

1 d 1 w 2 w 3 w 1 m

Exchange Rates

GARCH 1.950 2.102 2.459 2.638 3.250

TARCH 1.925 2.081 2.454 2.636 3.244

EGARCH 2.050 2.314 2.898 3.309 4.410

APARCH 1.928 2.100 2.489 2.690 3.366

NGARCH 1.937 2.097 2.456 2.648 3.264

Equity Sectors

GARCH 2.346 2.305 2.723 3.056 4.057

TARCH 2.217 2.120 2.523 2.834 3.870

EGARCH 2.314 2.264 2.710 3.036 4.007

APARCH 2.239 2.158 2.579 2.908 3.934

NGARCH 2.310 2.258 2.705 3.057 4.085

Equity Sectors

GARCH 2.234 2.146 2.749 3.409 4.447

TARCH 2.153 2.054 2.574 3.349 4.250

EGARCH 2.259 2.321 3.094 4.020 4.997

APARCH 2.166 2.105 2.652 3.405 4.280

NGARCH 2.179 2.098 2.659 3.407 4.372

Table 10: QL loss at multiple horizons volatility prediction comparison of GARCH models in Fall 2008 across asset

classes. For each asset class the table reports the out-of-sample average. The best average forecasting performance

for each loss and proxy pair is highlighted in bold.
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Model Horizon

1 d 1 w 2 w 3 w 1 m

Exchange Rates

GARCH 110.044 114.499 116.987 127.002 132.491

TARCH 108.383 113.066 115.490 124.790 129.967

EGARCH 109.409 113.732 118.584 123.752 126.294

APARCH 107.159 111.600 114.081 121.754 125.944

NGARCH 109.882 114.285 116.648 126.482 131.721

Equity Sectors

GARCH 1405.665 1426.406 1534.140 1570.666 1531.705

TARCH 1358.083 1414.462 1530.184 1564.682 1535.560

EGARCH 1397.247 1445.153 1558.041 1595.051 1542.011

APARCH 1365.171 1423.885 1542.536 1577.000 1542.832

NGARCH 1400.709 1434.603 1539.774 1573.340 1518.103

International Equities

GARCH 1746.705 1760.143 1919.864 2060.783 1970.426

TARCH 1680.130 1730.626 1899.445 2027.356 1935.291

EGARCH 1742.464 1861.786 2031.493 2124.680 1966.910

APARCH 1688.682 1762.531 1932.974 2048.238 1936.920

NGARCH 1730.617 1762.325 1920.797 2048.917 1932.315

Table 11: MSE loss at multiple horizons volatility prediction comparison of GARCH models in Fall 2008 across asset

classes. For each asset class the table reports the out-of-sample average. The best average forecasting performance

for each loss and proxy pair is highlighted in bold.
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(a) (b)

(c) (d)

Figure 1: TARCH parameter estimates series. The graph plots the series of the ω (a), α (b), γ (c), β (d) parameters

estimates obtained by the base estimation strategy using the TARCH model from 2001 to 2008.
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